
Отборочный этап VI сезона Аэрокосмической олимпиады МФТИ

Задача 1. Токийский гул

Заезжая в узкий туннель, скоростной поезд порождает ударную волну. Это явление, известное как «туннельный гул», представляет угрозу и требует изучения, поскольку ударные волны могут беспокоить людей и животных, повреждать конструкции. Рассмотрите модельную задачу: пусть температура невозмущённого воздуха в туннеле длиной 2 км равна $22~^{\circ}$ С, скорость поезда $600~^{\circ}$ км/ч. Определите время между выходами из туннеля ударной волны и самого поезда.

Воздух считайте идеальным двухатомным газом.

Задача 2. Сопло Лаваля

После проведения огневых испытаний жидкостного ракетного двигателя и обработки показаний датчиков известно, что массовый расход топлива через блок форсунок $\dot{m}=350~{\rm kr/c}$, температура в критическом сечении сопла $T_{\rm крит}=3500~{\rm K}$. Определите максимальную тягу, которую может развить данный двигатель. Оцените давление в камере сгорания при максимальной тяге. Поток продуктов сгорания топлива считайте одномерным с показателем адиабаты $\gamma=1.2$ и молярной массой $\mu=0.029~{\rm kr/moлb}$. Степень расширения сопла $S/S_{\rm крит}=16$. Атмосферное (внешнее) давление $101325~{\rm Ha}$.

Tеплообменом c окружающей средой пренебречь. Число Mаха в выходном сечении лежит в интервале от 3 до 5.

Задача 3. Звездочка в небе дрожит

В далёкой антарктической обсерватории отважные пингвины-астрофизики получили снимок Солнца image.jpg с помощью телескопа, оснащённого RGB-камерой. Они заметили, что солнечный диск ярче в центре и темнее у краёв — явление, известное как потемнение к краю.

Угловое распределение интенсивности излучения звезды часто описывают моделью

$$\frac{I(\psi)}{I(0)} = 1 + \sum_{k=1}^{N} A_k (1 - \cos \psi)^k,$$

где ψ — угол между нормалью к поверхности звезды и направлением на наблюдателя, I(0) — интенсивность в центре диска, A_k — коэффициенты модели, N — количество учитываемых слагаемых.

- 1. Постройте профиль яркости солнечного диска и с его помощью определите параметры модели потемнения к краю, аппроксимируя зависимость интенсивности первыми двумя членами разложения по $\cos \psi$. В качестве решения предоставьте код, выполняющий построение графика.
- 2. На представленном снимке видны солнечные пятна. Оцените температуру самой тёмной области одного из пятен, сравнив его среднюю интенсивность с интенсивностью фотосферы в его окрестности. Учтите явление потемнения диска Солнца к краю. Примите, что яркостная температура фотосферы в центре диска Солнца равна $T=6000~{
 m K}.$

Наблюдаемая интенсивность связана с компонентами RGB изображения как

$$I = 0.229 R + 0.587 G + 0.114 B.$$

Задача 4. GRACE-FO

На экваторильную круговую околоземную орбиту высотой h=400 км выведены два спутника одинаковой модели. На каждом из спутников установлен лазерный дальномер, который измеряет расстояние между аппаратами d с микрометровой точностью.

При обработке измерений дальномера ученые обнаружили необычное изменение межспутникового расстояния при пролете аппаратов над некоторой точкой экватора. Предполагается, что причиной является гравитационная аномалия, то есть большая масса, сконцентрированная в одной точке.

В grace_fo.txt хранятся измерения дальномера во время пролета над аномалией. Обработайте измерения, чтобы оценить массу аномалии.

 Γ равитационные поля Земли и аномалии считайте центральными. Γ равитационная аномалия расположена на поверхности Земли. Экваториальный радиус Земли R=6378 км. Используйте приближение $R\gg h\gg d$.

Задача 5. Она не круглая!

Крош и Лосяш поспорили: правда ли планета Смешариков — шар? Чтобы доказать Крошу, что планета имеет форму сплюснутого эллипсоида, Лосяш построил и запустил спутник, который каждые 2 минуты сообщает в Ромашковую долину свое положение и скорость. Чудесным образом нам удалось заполучить тот самый файл. Обработайте имеющиеся данные в not round.txt, чтобы понять, кто прав.

- 1. Определите долготу восходящего узла орбиты спутника Ω на каждый момент измерений;
- 2. По полученной зависимости оцените величину коэффициента J_2 гравитационного потенциала планеты.

Величину большой полуоси, эксцентриситета и наклонения спутника считайте равными:

$$a = 12165 \text{ km};$$

 $e = 0.0135;$
 $i = 52.64^{\circ}.$

 Γ равитационный параметр планеты Смешариков совпадает с земным. Вековое возмущение долготы восходящего узла $\Omega_{\rm век}$ орбиты может быть рассчитано по формуле

$$\Omega_{\text{BEK}} = -\frac{3}{3}J_2 \left(\frac{R}{a}\right)^2 \sqrt{\frac{\mu}{a^3}} \frac{\cos i}{(1 - e^2)^2},$$

 $где\ \mu$ – гравитационная постоянная, $R=6378\ км$ – экваториальный радиус Земли.

Задача 6. Не спится

Выпускникам и бывшим студентам ФАКТ МФТИ было предложено заполнить информацию о себе в анкетах, после чего результаты были помещены в insomnia.csv. Вам необходимо предобработать информацию, как об этом сказано в лекции Аэрокосмической олимпиады по машинному обучению. Обучить LinearRegressor, вернуться к задачи классификации, вывести необходимые для задачи метрики. Информация про колонки датасета находится в первой строчки каждой из колонок.

Задача 7. Кто чемпион?

Инопланетяне не оставляют попыток связаться с нашей цивилизацией. Они решили прислать некоторое изображение с помощью магнитных полей. Внеземной разум предполагал, что их особые частицы с зарядом и массой электрона будут жить в земных условиях ограниченное время, после чего исчезнут. Студенты и выпускники МФТИ смогли преобразовать сообщение инопланетян в champion.txt. Вам предлагается отобразить послание с помощью траектории частиц.

Формат входных данных: В первой строке через пробел предоставлены начальные координаты и проекции скорости частицы и время её жизни: x_0 , y_0 , Vx_0 , Vy_0 , Time.

Далее следует сетка (шаг по сетке dx = dy = 1м) значений индукции магнитного поля. Левая верхняя точка каждой сетки имеет координаты: $x = 0, \quad y = 0$. Ось X направлена слева направо, ось Y — сверху вниз. После этого информация (включая начальные данные новой частицы) повторяется (всего в файле 6 частиц и их сеток поля, каждая частица летает в своем поле). Все значения предоставлены в СИ.

 Φ ормат выходного изображения: Траектории всех частиц в своих полях следует наложить друг на друга в одной системе координат. Соотношение сторон изображения — 4:3

Формат предоставления ответа: код (.txt, или .py, или .ipynb файл), который выводит на экран картинку.

Задача 8. Штормовая долина

После веков исследований человечество начало активное освоение планеты W24872109 в галактике Андромеды — планеты железных пород, глубоких каньонов и сильных ветров. На одном из её континентов находится Штормовая долина — гигантский квадратный каньон с отвесными почти зеркальными стенами. Учёные подозревают, что форма долины не случайна, и возможно, она является искусственным сооружением древней цивилизации. Чтобы изучить её структуру, в каньон было сброшено два металлических исследовательских контейнера. Каждый контейнер — куб с высоким коэффициентом отражения сигнала. Длина ребра маленького контейнера составляет 40 метров, большого — 80 метров.

После приземления контейнеры сориентировались параллельно стенам долины, однако системы навигации были повреждены, и теперь невозможно напрямую определить их координаты. У ученых осталась только запись акустического сигнала signal.txt — отклика долины на грохот приземления, отраженный от стен каньона. Используя известные размеры контейнеров и считая, что сигнал содержит всевозможные основные резонансные частоты:

- 1) Оцените размеры Штормовой долины.
- 2) Определите координаты расположения каждого контейнера в Штормовой долине.
- 3) Постройте карту расположения контейнеров с учётом их реальных размеров.

Учитывать только основную продольную моду. Гармоники высших порядков считать погашенными материалом контейнеров.